首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solid state coordination chemistry of the copper(ii)-terpyridine/oxovanadium organophosphonate system: hydrothermal syntheses, structural characterization and magnetic properties
Authors:Yucesan Gundog  Golub Vladimir  O'Connor C J  Zubieta Jon
Institution:Department of Chemistry, Syracuse University, Syracuse, NY, NY 13244, USA.
Abstract:The hydrothermal reactions of CuSO4.5H2O, Na3VO4, 2,2':6':2'-terpyridine (terpy), and the appropriate organophosphonate ligand yield a series of materials of the Cu(ii)-terpy/oxovanadium organophosphonate family. The complexes exhibit distinct structures spanning one-, two- and three-dimensions and exhibiting diverse oxovanadium building blocks. Thus, {Cu(terpy)}(V2O4)(O3PPh)(HO3PPh)2] (1) is one-dimensional and constructed from binuclear units of corner-sharing V(v) square pyramids. While {Cu(terpy)}VO(O3PCH2PO3)] (2), {Cu(terpy)}2(V4O10)(O3PCH2CH2PO3)] (3), and {Cu(terpy)}(V2O4){O3P(CH2)3PO3}].2.5H(2)O (4.2.5H2O) are similarly one-dimensional, the V/O structural components consist of isolated V(iv) square pyramids, tetranuclear V(v) units of three tetrahedra and one square pyramid in a corner-sharing arrangement, and isolated V(v) tetrahedra and square pyramids, respectively. The second propylenediphosphonate derivative, {Cu(terpy)}(V2O4){O3P(CH2)3PO3}] (5) is three-dimensional and exhibits isolated V(v) tetrahedra as the vanadate component. The two-dimensional structure of {Cu(terpy)(H2O)}(V3O6){O3P(CH2)4PO3}] (6) is mixed valence with isolated V(iv) square pyramids and binuclear units of corner-sharing V(v) tetrahedra providing the V/O substructures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号