首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl)phenyl]-1-ethanone modified carbon paste electrode.
Authors:Jahan-Bakhsh Raoof  Reza Ojani  Hadi Beitollahi  Rahman Hosseinzadeh
Institution:Electroanalytical Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Mazandaran University, Babolsar, Iran.
Abstract:A carbon paste electrode (CPE) chemically modified with 1-4-(ferrocenyl ethynyl)phenyl]-1-ethanone (4-FEPEMCPE) was employed to study the electrocatalytic oxidation of L-cysteine using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry as diagnostic techniques. The diffusion coefficient (D = 7.863 x 10(-6) cm2 s(-1)) of L-cysteine was also estimated using chronoamperometry. The electron-transfer coefficient, alpha (= 0.40), for L-cysteine at the surface of 4-FEPEMCPE was determined using cyclic voltammetry technique. It was found that under an optimum pH (= 7.00), the oxidation of L-cysteine at the surface of such an electrode occurred at a potential of about 350 mV less positive than that of an unmodified CPE. The catalytic oxidation peak currents represented a linear dependence on the L-cysteine concentration. Linear analytical curves were obtained in the ranges of 9.0 x 10(-5) - 4.9 x 10(-3) M and 2.0 x 10(-5) - 2.8 x 10(-3) M of L-cysteine with correlation coefficients of 0.9981 and 0.9982 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2 sigma) were determined to be 9.9 x 10(-6) M and 5 x 10(-6) M with cyclic voltammetry and differential pulse voltammetry, respectively. The influences of twenty other amino acids, such as glutamine, L-glutamic acid, L-glysine, L-histidine, L-isoleucine, L-leucine, L-arginine hydrochloride, L-aspargine, L-aspartic acid, S-carboxy methyl-L-cysteine, L-methionine, L-phenyl alanine, L-proline, L-serine, L-threonine, L-cystine, cysteamine and gluthathione, on the current response of the sensor were examined. The obtained results did not show any influence on the analytical signal of L-cysteine by these amino acids (except for cysteamine). The method was also used for the selective determination of L-cysteine in patient-blood plasma and some pharmaceutical preparations by using standard addition method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号