首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of the Hermitian and Skew-Hermitian Splitting Iteration for Saddle-Point Problems
Authors:Michele Benzi  Martin J Gander  Gene H Golub
Abstract:We study the asymptotic rate of convergence of the alternating Hermitian/skew-Hermitian iteration for solving saddle-point problems arising in the discretization of elliptic partial differential equations. By a careful analysis of the iterative scheme at the continuous level we determine optimal convergence parameters for the model problem of the Poisson equation written in div-grad form. We show that the optimized convergence rate for small mesh parameter h is asymptotically 1–O(h 1/2). Furthermore we show that when the splitting is used as a preconditioner for a Krylov method, a different optimization leading to two clusters in the spectrum gives an optimal, h-independent, convergence rate. The theoretical analysis is supported by numerical experiments.This revised version was published online in October 2005 with corrections to the Cover Date.
Keywords:HSS iteration  saddle-point problems  Fourier analysis  rates of convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号