首页 | 本学科首页   官方微博 | 高级检索  
     


The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism
Authors:Pierre Hudon  Don R. Baker
Affiliation:Department of Earth and Planetary Sciences, McGill University, 3450 rue Université, Montréal, QC, Canada H3A 2A7
Abstract:A comprehensive review of structural data in binary silicate systems indicates that the tetrahedral critical radius (87.2 pm) of binary silicate melts (or glasses) is associated with the silicon tetrahedral network that defines the structure of the melt. In a binary system, most of the cages present in the melt are made of six and five-membered rings of silicon tetrahedra. Cages bounded by six or more-membered rings can host cations of all sizes. However, cations that enter in cages made of five-membered rings are discriminated by their ionic radius. Cations with ionic radii larger than about 87.2 pm (network modifiers) cannot enter in pentagonal apertures; cations with radii smaller than 87.2 pm (amphoteric cations) can. Cages bounded by pentagonal rings play a key role in phase separation by selecting which cations can fit in them, adopt a four-fold coordination, and reduce the size of miscibility gaps, i.e. the cages permit explaining why some cations are amphoteric. This result is important because it shows that a structural control is exerted by the solvent (here SiO2) upon immiscibility which creates a selective solution mechanism that affects small (<87.2 pm) cations in binary silica-rich melts.
Keywords:P120   S440
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号