首页 | 本学科首页   官方微博 | 高级检索  
     


The nature of phase separation in binary oxide melts and glasses. I. Silicate systems
Authors:Pierre Hudon  Don R. Baker
Affiliation:Department of Earth and Planetary Sciences, McGill University, 3450 rue Université, Montréal, QC, Canada H3A 2A7
Abstract:
An exhaustive review of compositional and thermal extents of miscibility gaps in 41 binary silicate systems permits identification of three groups of cations exhibiting different immiscibility behaviours. The first group comprises network-modifier cations with an ionic radius larger than about 87.2 pm. They have coordination numbers equal to, or higher than, 5 and their miscibility gap size increases linearly with increasing ionic potential. The second group involves cations with an ionic radius larger than 26 pm and smaller than about 87.2 pm (in octahedral coordination). They have at least two coordination numbers: the first one is always 4 and the other 5 (or more). For this reason they are called amphoteric. Their miscibility gap sizes do not increase linearly with an increase of the ionic potential, but follow curves. The third group includes cations with variable crystal field stabilization energies. They are characterized by larger miscibility gap sizes than expected when they are compared with cations with similar ionic radii despite the fact that some of them (e.g. Cr3+) may behave as an amphoteric element because their ionic radii in octahedral coordination are smaller than about 87.2 pm. The origin of phase separation in binary silicate systems is due to coulombic repulsions between poorly screened cations bounded by bridging oxygen strongly polarized towards the silicon, and by non-bridging oxygen.
Keywords:P120   S440   A140
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号