首页 | 本学科首页   官方微博 | 高级检索  
     


Fractional motions
Authors:Iddo I. Eliazar  Michael F. Shlesinger
Affiliation:1. Holon Institute of Technology, P.O. Box 305, Holon 58102, Israel;2. Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203, USA
Abstract:Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.
Keywords:Brownian motion   Fractional Brownian motion    vy motion   Fractional Lé  vy motion   Langevin&rsquo  s equation   Random walks   Scaling limits   Universality   Noah exponent   Noah effect   Joseph exponent   Joseph effect   Sub-diffusion   Super-diffusion   Short-range correlations   Long-range correlations   Fractal trajectories   Selfsimilarity   Hurst exponent
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号