首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of molecular structure on the solute-micelle and solute-stationary phase binding constants in micellar liquid chromatography
Authors:Hanfa Zou  Yukui Zhang  Peichang Lu
Institution:

National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Academia Sinica, Dalian 116011, China

Abstract:The effects of molecular structure on the solute-micelle and solute-stationary phase binding constants in micellar liquid chromatography (MLC) have been investigated. The following points have been observed. (1) There is quite a good linear relationship between the solute-micelle and solute-stationary phase binding constants in MLC with the cationic (CTAB) and anionic surfactants as the additives, which means that the contribution of physico-chemical properties of solutes on the solute-micelle and solute-stationary phase binding constants acts in a parallel way. (2) Good quantitative relationships between the solute-micelle and solute-stationary phase binding constants and the solvatochromic parameters have been obtained, which indicates that the distribution mechanism of the neutral solutes in MLC is determined via their molecular interactions. Both the cavity process and the hydrogen bond interaction play a very important role in the retention of neutral solutes in MLC. The contribution of the hydrogen bond interaction, especially the hydrogen donor ability of the solutes on those binding constants in anionic and cationic surfactant MLC, is determined in a different way. (3) Linear regression analysis of the solute-micelle and solute-stationary phase binding constants between the cationic and anionic surfactant MLC has been carried out. The obtained results suggest that the transfer of the non-polar solutes from the aqueous phase to the anionic and cationic surfactant micelles acts in a parallel way, but that of the polar solutes in a different way. A model of micelles with three different sites of solubilization, i.e., (1) the core of the micelle, (2) the surface of the micelle and (3) the palisade layer of the micelle, has been used to successfully explain the observed results. Finally, the retention behavior of solutes in MLC is compared with that in reversed-phase liquid chromatography (RP-LC). It has been observed that there is no difference in separation selectivity for the non-polar solutes between MLC and RP-LC; however, for the polar solutes, MLC provides a different separation selectivity compared to that in RP-LC.
Keywords:Liquid chromatography  Micelles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号