首页 | 本学科首页   官方微博 | 高级检索  
     


Entropic criterion for model selection
Authors:Chih-Yuan Tseng  
Affiliation:

aDepartment of Physics, Computational Biology and Bioinformatics Lab, National Central University, Jhongli 320, Taiwan

Abstract:Model or variable selection is usually achieved through ranking models according to the increasing order of preference. One of methods is applying Kullback–Leibler distance or relative entropy as a selection criterion. Yet that will raise two questions, why use this criterion and are there any other criteria. Besides, conventional approaches require a reference prior, which is usually difficult to get. Following the logic of inductive inference proposed by Caticha [Relative entropy and inductive inference, in: G. Erickson, Y. Zhai (Eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, vol. 707, 2004 (available from arXiv.org/abs/physics/0311093)], we show relative entropy to be a unique criterion, which requires no prior information and can be applied to different fields. We examine this criterion by considering a physical problem, simple fluids, and results are promising.
Keywords:Model selection   Inductive inference   Kullback–Leibler distance   Relative entropy   Probability model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号