首页 | 本学科首页   官方微博 | 高级检索  
     


3D-structured carbon-coated MnO/graphene nanocomposites with exceptional electrochemical performance for Li-ion battery anodes
Authors:Yazhou Wang  Lixin Wang  Zhipeng Ma  Lijun Gao  Xucai Yin  Ailing Song  Xiujuan Qin  Guangjie Shao  Weimin Gao
Affiliation:1.State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,China;2.Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering,Yanshan University,Qinhuangdao,China
Abstract:MnO has a high theoretical capacity, moderate discharge plateau, and low polarization when it is used as the anode material in lithium battery. However, the issues that limit its application are its poor conductivity and large volume changes, which can easily result in the collapse of electrode structure during long-term cycling. In the present work, a carbon-coated MnO/graphene 3D-network anode material is synthesized by an electrostatic adsorption of dispersed precipitates precipitation method. The MnO nanoparticles coated by carbon are uniformly distributed on the surface of graphene nanosheets and form a 3D sandwich-like nanostructure. A carbon layer is coated on the surface of MnO nanoparticles, which slows down the volume expansion in the process of lithium intercalation. The graphene nanosheets are cross-linked through carbons in this 3D nanostructure, which provides mechanical support and effective electron conduction pathways during the charge-discharge. The electrochemical tests indicate that the prepared 3D carbon-coated MnO/graphene electrode exhibits an excellent rate capacity of 1247.3 and 713.2 mAh g?1 at 100 and 1000 mA g?1, respectively. The capacity is 792.2 mAh g?1 after long cycle at a current density of 1000 mA g?1. The specific capacity is higher than that of MnO-based composite lithium anode materials currently reported. The superior rate and cycling performances are attributed to the unique 3D-network structure, which provides an effectively conductive network, buffers volume expansion, and prevents falling and aggregation of MnO in the charge and discharge process of the electrode materials. The 3D-structured carbon-coated MnO/graphene anode material will have an excellent application prospect.
Graphical abstract Cyclic performance at 1 A g?1 and SEM images (inset) of the 3D-structured carbon-coated MnO/graphene nanocomposite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号