首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A scenario decomposition approach for stochastic production planning in sawmills
Authors:M Kazemi Zanjani  M Nourelfath  D Ait-Kadi
Institution:1.Concordia University,Montreal,Canada;2.Université Laval,Québec,Canada;3.Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT),Montreal,Canada
Abstract:This study considers a real world stochastic multi-period, multi-product production planning problem. Motivated by the challenges encountered in sawmill production planning, the proposed model takes into account two important aspects: (i) randomness in yield and in demand; and (ii) set-up constraints. Rather than considering a single source of randomness, or ignoring set-up constraints as is typically the case in the literature, we retain all these characteristics while addressing real life-size instances of the problem. Uncertainties are modelled by a scenario tree in a multi-stage environment. In the case study, the resulting large-scale multi-stage stochastic mixed-integer model cannot be solved by using the mixed-integer solver of a commercial optimization package, such as CPLEX. Moreover, as the production planning model under discussion is a mixed-integer programming model lacking any special structure, the development of decomposition and cutting plane algorithms to obtain good solutions in a reasonable time-frame is not straightforward. We develop a scenario decomposition approach based on the progressive hedging algorithm, which iteratively solves the scenarios separately. CPLEX is then used for solving the sub-problems generated for each scenario. The proposed approach attempts to gradually steer the solutions of the sub-problems towards an implementable solution by adding some penalty terms in the objective function used when solving each scenario. Computational experiments for a real-world large-scale sawmill production planning model show the effectiveness of the proposed solution approach in finding good approximate solutions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号