Evidence for a SN2-type pathway for phosphine exchange in phosphine-phosphenium cations, [R2P--PR'3]+ |
| |
Authors: | Slattery John M Fish Cheryl Green Michael Hooper Thomas N Jeffery John C Kilby Richard J Lynam Jason M McGrady John E Pantazis Dimitrios A Russell Christopher A Willans Charlotte E |
| |
Affiliation: | School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. |
| |
Abstract: | Abstraction of a Cl(-) ion from the P-chlorophospholes, R4C4PCl (R=Me, Et), produced the P--P bonded cations [R4C4P--P(Cl)C4R4]+, which reacted with PPh3 to afford X-ray crystallographically characterised phosphine-phosphenium cations [R4C4P(PPh3)]+ (R=Me, Et). Examination of the 31P-{1H} NMR spectrum of a solution (CH2Cl(2)) of [Et4C4P-(PPh3)]+ and PPh3 revealed broadening of the resonances due to both free and coordinated PPh3, and importantly it proved possible to measure the rate of exchange between PPh3 and [Et4C4P-(PPh3)]+ by line shape analysis (gNMR programmes). The results established second-order kinetics with DeltaS( not equal)=(-106.3+/-6.7) J mol(-1) K(-1), DeltaH( not equal)=(14.9+/-1.6) kJ mol(-1) and DeltaG( not equal) (298.15 K)=(46.6+/-2.6) kJ mol(-1), values consistent with a SN2-type pathway for the exchange process. This result contrasts with the dominant dissociative (S(N)1-type) pathway reported for the analogous exchange reactions of the [ArNCH2CH2N(Ar)P(PMe3)]+ ion, and to understand in more detail the factors controlling these two different reaction pathways, we have analysed the potential energy surfaces using density functional theory (DFT). The calculations reveal that, whilst phosphine exchange in [Et4C4P(PPh3)]+ and [ArNCH2CH2N(Ar)P(PMe3)](+) is superficially similar, the two cations differ significantly in both their electronic and steric requirements. The high electrophilicity of the phosphorus center in [Et4C4P]+, combined with strong pi-pi interactions between the ring and the incoming and outgoing phenyl groups of PPh3, favours the SN2-type over the SN1-type pathway in [Et4C4P(PPh3)]+. Effective pi-donation from the amide groups reduces the intrinsic electrophilicity of [ArNCH2CH2N(Ar)P]+, which, when combined with the steric bulk of the aryl groups, shifts the mechanism in favour of a dissociative SN1-type pathway. |
| |
Keywords: | carbene homologues cations density functional calculations phosphorus structure elucidation |
本文献已被 PubMed 等数据库收录! |
|