首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Existence and stability of planar diffusion waves for 2-D Euler equations with damping
Authors:Weike Wang  Tong Yang
Institution:a Department of Mathematics, Shanghai Jiao Tong University, China
b Department of Mathematics, City University of Hong Kong, Hong Kong
Abstract:To study the non-linear stability of a non-trivial profile for a multi-dimensional systems of gas dynamics, the combination of the Green function on estimating the lower order derivatives and the energy method for the higher order derivatives is shown to be not only useful but sometimes maybe also essential. In this paper, we study the stability of a planar diffusion wave for the isentropic Euler equations with damping in two-dimensional space. By introducing an approximate Green function for the linearized equations around the planar diffusion wave and by applying the energy method, we prove the global existence and the L2 convergence rate of the solution when the initial data is a small perturbation of the planar diffusion wave. The decay rates of the perturbation and its lower order spatial derivatives obtained are optimal in the L2 norm. Furthermore, the constructed approximate Green function in this paper can be used for the pointwise and the Lp estimates of the solutions concerned. In fact, the approach by combining of the Green function and energy method can be applied to other system especially when the derivatives of the coefficients in the system have certain time decay properties.
Keywords:2-D Euler equations  Frictional damping  Approximate Green function  Energy method  Convergence rates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号