首页 | 本学科首页   官方微博 | 高级检索  
     


An inexact bundle variant suited to column generation
Authors:K. C. Kiwiel  C. Lemaréchal
Affiliation:(1) Newelska 6, 01-447 Warsaw, Poland;(2) INRIA, 655 avenue de l’Europe, Montbonnot, 38334 St Ismier, France
Abstract:We give a bundle method for constrained convex optimization. Instead of using penalty functions, it shifts iterates towards feasibility, by way of a Slater point, assumed to be known. Besides, the method accepts an oracle delivering function and subgradient values with unknown accuracy. Our approach is motivated by a number of applications in column generation, in which constraints are positively homogeneous—so that zero is a natural Slater point—and an exact oracle may be time consuming. Finally, our convergence analysis employs arguments which have been little used so far in the bundle community. The method is illustrated on a number of cutting-stock problems. Research supported by INRIA New Investigation Grant “Convex Optimization and Dantzig–Wolfe Decomposition”.
Keywords:Nondifferentiable optimization  Convex programming  Proximal bundle methods  Approximate subgradients  Column generation  Cutting-stock problem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号