Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions |
| |
Authors: | Kang In Joong Khan Nazmul Abedin Haque Enamul Jhung Sung Hwa |
| |
Affiliation: | Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701, Korea. |
| |
Abstract: | Chemical and thermal stabilities of isotypic metal-organic frameworks (MOFs) like Al-BDC (Al-benzenedicarboxylate called MIL-53-Al), Cr-BDC (MIL-53-Cr) and V-BDC (MIL-47-V), after purification to remove uncoordinated organic linkers, have been compared to understand the effect of the central metal ions on the stabilities of the porous MOF-type materials. Chemical stability to acids, bases, and water decreases in the order of Cr-BDC>Al-BDC>V-BDC, suggesting stability increases with increasing inertness of the central metal ions. However, thermal stability decreases in the order of Al-BDC>Cr-BDC> V-BDC, and this tendency may be explained by the strength of the metal-oxygen bond in common oxides like Al(2)O(3), Cr(2)O(3), and V(2)O(5). In order to evaluate precisely the stability of a MOF, it is necessary to remove uncoordinated organic linkers that are located in the pores of the MOF, because a filled MOF may be more stable than the same MOF after purification. |
| |
Keywords: | chemical stability metal–organic frameworks oxides thermal stability thermochemistry |
本文献已被 PubMed 等数据库收录! |
|