首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detached-Eddy Simulations Past a Circular Cylinder
Authors:Andrei Travin  Michael Shur  Michael Strelets  Philippe Spalart
Institution:(1) Federal Scientific Center ``Applied Chemistry', St. Petersburg, 197198, Russia;(2) Boeing Commercial Airplanes, P.O. Box 3707, Seattle, WA, 98124, U.S.A.
Abstract:The flow is calculated with laminar separation (LS) at Reynolds numbers 50,000 and 140,000, and with turbulent separation (TS) at140,000 and 3 × 106. The TS cases are effectively tripped, but compared with untripped experiments at very high Reynolds numbers. The finest grid has about 18,000 points in each of 56 grid planes spanwise; the resolution is far removed from Direct Numerical Simulations, and the turbulence model controls the separation if turbulent. The agreement is quite good for drag, shedding frequency, pressure, and skin friction. However the comparison is obscured by large modulations of the vortex shedding and drag which are very similar to those seen in experiments but also, curiously, durably different between cases especially of the LS type. The longest simulations reach only about 50 shedding cycles. Disagreement with experimental Reynolds stresses reaches about 30%, and the length of the recirculation bubble is about double that measured. The discrepancies are discussed, as are the effects of grid refinement, Reynolds number, and a turbulence-model curvature correction. The finest grid does not give the very best agreement with experiment. The results add to the validation base of the Detached-Eddy Simulation (DES) technique for smooth-surface separation. Unsteady Reynolds-averaged simulations are much less accurate than DES for LS cases, but very close for TS cases. Cases with a more intricate relationship between transition and separation are left for future study. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:separation  simulation  cylinder  turbulence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号