Phase diagrams of ionic liquids-based aqueous biphasic systems as a platform for extraction processes |
| |
Affiliation: | 1. Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Av. Murilo Dantas 300, Farolândia, CEP: 49032-490, Aracaju, SE, Brazil;2. Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal;3. Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas 300, CEP: 49032-490, Aracaju, SE, Brazil;1. Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal;2. QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;1. Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran;2. Department of Chemical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran;1. UNIT – Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju-SE, Brazil;2. CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;3. ITP – Technology and Research Institute, Av. Murilo Dantas, 300, Aracaju-SE, Brazil |
| |
Abstract: | In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency. |
| |
Keywords: | Aqueous biphasic systems Ionic liquid Anion Cation pH Potassium salts Ionic strength |
本文献已被 ScienceDirect 等数据库收录! |
|