首页 | 本学科首页   官方微博 | 高级检索  
     


Rainbow Connection Number and Radius
Authors:Manu Basavaraju  L. Sunil Chandran  Deepak Rajendraprasad  Arunselvan Ramaswamy
Affiliation:1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India
Abstract:
The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) ≤  r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (K 1,n for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) ≤  rk. Hitherto, the only reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 ? 1, where n is order of the graph (Caro et al. in Electron J Comb 15(1):Research paper 57, 13, 2008). It is known that computing rc(G) is NP-Hard (Chakraborty and fischer in J Comb Optim 1–18, 2009). Here, we present a (r + 3)-factor approximation algorithm which runs in O(nm) time and a (d + 3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号