Estimation of entropy and other functionals of a multivariate density |
| |
Authors: | Harry Joe |
| |
Affiliation: | (1) Department of Statistics, University of British Columbia, 2021 West Mall, V6T 1W5 Vancouver, B.C., Canada |
| |
Abstract: | For a multivariate density f with respect to Lebesgue measure , the estimation of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGkbGaaiikaiaadAgacaGGPaGaamOzaiaadsgacqaH% 8oqBaSqabeqaniabgUIiYdaaaa!4404![int {J(f)fdmu } ], and in particular % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGMbWaaWbaaSqabeaacaaIYaaaaOGaamizaiabeY7a% TbWcbeqab0Gaey4kIipaaaa!41E4![int {f^2 dmu } ] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGMbGaciiBaiaac+gacaGGNbGaamOzaiaadsgacqaH% 8oqBaSqabeqaniabgUIiYdaaaa!44AC![int {flog fdmu } ], is studied. These two particular functionals are important in a number of contexts. Asymptotic bias and variance terms are obtained for the estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaacaWGkbGaaiikamaawagabeWcbeqaaiabgEIizdqdbaGaamOzaa% aakiaacMcacaWGKbGaamOramaaBaaaleaacaWGobaabeaaaeqabeqd% cqGHRiI8aaaa!4994![mathop Ilimits^ wedge = int {J(mathop flimits^ wedge )dF_N } ] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaeSipIOdaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaacaWGkbGaaiikamaawagabeWcbeqaaiabgEIizdqdbaGaamOzaa% aakiaacMcadaGfGbqabSqabeaacqGHNis2a0qaaiaadAgaaaGccaWG% KbGaeqiVd0galeqabeqdcqGHRiI8aaaa!4C40![mathop Ilimits^ sim = int {J(mathop flimits^ wedge )mathop flimits^ wedge dmu } ], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGMbaaaaaa!3E9C![{mathop flimits^ wedge }] is a kernel density estimate of f and Fn is the empirical distribution function based on the random sample X1,..., Xn from f. For the two functionalsmentioned above, a first order bias term for Î can be made zero by appropriate choices of non-unimodal kernels. Suggestions for the choice of bandwidth are given; for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaadaGfGbqabSqabeaacqGHNis2a0qaaiaadAgaaaGccaWGKbGaam% OramaaBaaaleaacaWGobaabeaaaeqabeqdcqGHRiI8aaaa!476C![mathop Ilimits^ wedge = int {mathop flimits^ wedge dF_N } ], a study of optimal bandwidth is possible.This research was supported by an NSERC Grant and a UBC Killam Research Fellowship. |
| |
Keywords: | Kernel density estimation multivariate density empirical process entropy |
本文献已被 SpringerLink 等数据库收录! |
|