首页 | 本学科首页   官方微博 | 高级检索  
     


Direct electron transfer and electrocatalysis of hemoglobin in layer-by-layer films assembled with Al-MSU-S particles
Authors:Sun Zhiyu  Li Youqin  Zhou Tianshu  Liu Ye  Shi Guoyue  Jin Litong
Affiliation:

aDepartment of Chemistry, East China Normal University, Zhongshan Road (N), Shanghai 200062, PR China

bDepartment of Environmental Science, 3663 Zhongshan Road (N), Shanghai 200062, PR China

Abstract:In this paper, layer-by-layer (LBL) {MSU/Hb}(n)/PDDA films assembled by alternate adsorption of positively charged hemoglobin (Hb) and negatively charged mesoporous molecular sieves of Al-MSU-S onto a glassy carbon electrode (GCE) were reported. Al-MSU-S was synthesized by the precursor of zeolite Y and ionic liquids 1-hexadecane-3-methylimidazolium bromide (CMIMB) as a template in basic medium. It exhibited larger pore diameter, pore volume and surface area. Direct electrochemical and electrocatalytic properties of Hb in these layer-by-layer films were investigated. A pair of well-defined nearly reversible cyclic voltammetric peaks was observed and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -0.295V (vs. SCE). The influences of layer's number and the pH of the external solution to the electron transfer behavior of Hb in {MSU/Hb}(n)/PDDA films were also estimated by cyclic voltammetry and a set of optimized conditions for film fabrication was inferred. The hemoglobin in{MSU/Hb}(n)/PDDA films displayed a good electrocatalytic activity to the reduction of hydrogen peroxide, which had linear current responses from 1.0 x 10(-6) to 1.86 x 10(-4)mol/L with the detection limit of 5.0 x 10(-7)mol/L (S/N=3). The apparent Michaeli-Menten constant (K(m)(app)) was 0.368 mmol/L. Thus, this methodology shows potential application of the preparation of third-generation biosensors.
Keywords:LBL assembled   {MSU/Hb}n/PDDA   Hemoglobin   Hydrogen peroxide
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号