首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the superconducting transition temperature for metallic nanocrystals
Authors:M N Magomedov
Institution:(1) Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, pr. Kalinina 39a, Makhachkala, 367030, Russia
Abstract:A new approach is proposed for calculating the Debye temperature of a nanocrystal in the form of an n-dimensional rectangular parallelepiped with an arbitrary microstructure and the number of atoms N ranging from 2n to infinity. The geometric shape of the system is determined by the lateral-to-basal edge ratio of the parallelepiped. The size dependences of the Debye and melting temperatures for a number of materials are calculated using the derived relationship. The theoretical curves thus obtained agree well with the experimental data. The calculated dependences of the superconducting transition temperature T c on the size d of aluminum, indium, and lead nanocrystals are also in reasonable agreement with the experimental estimates of T c (d). It is demonstrated that, as the nanocrystal size d decreases, the greater the deviation of the nanocrystal shape from an equilibrium shape (in our case, a cube), the higher the temperature of the superconducting transition T c (d). The superconducting transition temperature is calculated as a function of the thickness (diameter) of a plate (rod) with an arbitrary length. It is found that a decrease in the thickness (diameter) of the plate (rod) leads to an increase in the temperature T c (z): the looser the microstructure of the metallic nanocrystal, the higher the temperature T c (z).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号