首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Competition mechanism between singlet and triplet superconductivity in the tight-binding model with anisotropic attractive potential
Authors:R Gonczarek  L Jacak  M Krzyzosiak  A Gonczarek
Institution:(1) Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract:Based upon the tight-binding formalism a model of a high-Tc superconductor with isotropic and anisotropic attractive interactions is considered analytically. Symmetry facets of the group C4v are included within a method of successive transformations of the reciprocal space. Complete sets of basis functions of C4v irreducible representations are given. Plausible spin-singlet and spin-triplet superconducting states are classified with regard to the chosen basis functions. It is displayed that pairing interaction coefficients and the dispersion relation, which can be characterized by the parameter η= 2t1/t0, have a diverse and mutually competing influence on the value of the transition temperature. It is also shown that in the case of a nearly half-filled conduction band and an anisotropic pairing interaction the spin-singlet d-wave symmetry superconducting state is realized for small values of the parameter η, whereas in the opposite limit, for sufficiently large values, the spin-triplet p-wave symmetry superconducting state has to be formed. This result cannot be obtained within the Van Hove scenario or BCS-type approaches, where the p-wave symmetry superconducting state absolutely dominates. The specific heat jump and the isotope shift as functions of the parameter η are assessed and discussed for the d-wave symmetry singlet and the p-wave symmetry triplet states.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号