Nonreductive Enantioselective Ring Opening of N-(Methylsulfonyl)dicarboximides with Diisopropoxytitanium α,α,α′,α′-Tetraaryl-1,3-dioxolane-4,5-dimethanolate |
| |
Authors: | Diego J. Ram n,Gabriela Guillena,Dieter Seebach |
| |
Affiliation: | Diego J. Ramón,Gabriela Guillena,Dieter Seebach |
| |
Abstract: | The bicyclic and tricyclic meso-N-(methylsulfonyl)dicarboximides 1a–f are converted enantioselectively to isopropyl [(sulfonamido)carbonyl]-carboxylates 2a–f by diisopropoxytitanium TADDOLate (75–92% yield; see Scheme 3). The enantiomer ratios of the products are between 86:14 and 97:3, and recrystallization from CH2Cl2/hexane leads to enantiomerically pure sulfonamido esters 2 (Scheme 3). The enantioselectivity shows a linear relationship with the enantiomer excess of the TADDOL employed (Fig.3). Reduction of the ester and carboxamide groups (LiAlH4) and additional reductive cleavage of the sulfonamido group (Red-Al) in the products 2 of imide-ring opening gives hydroxy-sulfonamides 3 and amino alcohols 4 , respectively (Scheme 4). The absolute configuration of the sulfonamido esters 2 is determined by chemical correlation (with 2a,b ; Scheme 6), by the X-ray analysis of the camphanate of 3e (Fig. 1), and by comparative 19F-NMR analysis of the Mosher esters of the hydroxy-sulfonamides 3 (Table 1). A general proposal for the assignment of the absolute configuration of primary alcohols and amines of Formula HXCH2CHR1R2, X = O, NH, is suggested (see 11 in Table 1). It follows from the assignment of configuration of 2 that the Re carbonyl group of the original imide 1 is converted to an isopropyl ester group. This result is compatible with a rule previously put forward for the stereochemical course of reactions involving titanium TADDOLate activated chelating electrophiles ( 12 in Scheme 7). A tentative mechanistic model is proposed ( 13 and 14 in Scheme 7). |
| |
Keywords: | |
|
|