首页 | 本学科首页   官方微博 | 高级检索  
     

泊松-逆伽玛分布假设下的GAMLSS回归模型
作者姓名:徐娇  马江洪
作者单位:长安大学理学院,陕西西安 710064
基金项目:国家重点研发计划 ( 2023YFF1304703 )
摘    要:计数数据大量出现在医学、社会学、心理学、保险和交通等领域,是一类十分重要的数据类型。不过,计数数据常出现过度分散现象,使得普通的泊松回归模型无法解释,从而失去效用。本文研究一类混合泊松分布,专门用于拟合这种过度分散的计数数据。主要工作是基于现有的泊松-广义逆高斯分布、泊松-倒逆高斯分布和泊松-逆伽玛分布等三类混合泊松分布,利用广义可加模型(GAMLSS)的灵活性,构建泊松-逆伽玛分布假设下的GAMLSS模型。为验证模型性能,本文还将泊松-逆伽玛、泊松-倒逆高斯和负二项分布假设下的GAMLSS模型应用于车险索赔频率数据,并根据全局偏差、AIC和BIC等准则评估模型。结果表明,本文模型对过度分散的车险索赔频率数据的拟合明显优于负二项、泊松-倒逆高斯分布假设下的GAMLSS模型,是一个处理过度分散计数数据的有效模型。

关 键 词:混合泊松分布  过度分散  泊松-逆伽玛分布  GAMLSS模型  车险索赔频率  
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号