Accelerating and decelerating effects of metal ions on electron-transfer reduction of quinones as a function of temperature and binding modes of metal ions to semiquinone radical anions |
| |
Authors: | Yuasa Junpei Yamada Shunsuke Fukuzumi Shunichi |
| |
Affiliation: | Department of Material and Life Science, Graduate School of Engineering, Osaka University and SORST (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. |
| |
Abstract: | The accelerating effect of Sc(3+) on the electron-transfer (ET) reduction of the p-benzoquinone derivative 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ) by 10,10'-dimethyl-9,9'-biacridine ((AcrH)(2)) at 233 K changes to a decelerating effect with increasing reaction temperature; the observed second-order rate constant k(et) decreases with increasing Sc(3+) concentration at high concentrations of Sc(3+) at 298 K. At 263 K the k(et) value remains constant with increasing Sc(3+) concentration. Such a remarkable difference with regard to dependence of k(et) on [Sc(3+)] between low and high temperatures results from the difference in relative activity of two ET pathways that depend on temperature, one of which affords 1:1 complex TolSQ*(-)-Sc(3+), and the other 1:2 complex TolSQ*(-)-(Sc(3+))(2) with additional binding of Sc(3+) to TolSQ*(-)-Sc(3+). The formation of TolSQ*(-)-Sc(3+) and TolSQ*(-)-(Sc(3+))(2) complexes was confirmed by EPR spectroscopy in the ET reduction of TolSQ in the presence of low and high concentrations of Sc(3+), respectively. The effects of metal ions on other ET reactions of quinones to afford 1:1 and 1:2 complexes between semiquinone radical anions and metal ions are also reported. The ET pathway affording the 1:2 complexes has smaller activation enthalpies DeltaH( not equal) and more negative activation entropies DeltaS( not equal) because of stronger binding of metal ions and more restricted geometries of the ET transition states as compared with the ET pathway to afford the 1:1 complexes. |
| |
Keywords: | electron transfer kinetics quinones radical ions reduction |
本文献已被 PubMed 等数据库收录! |
|