首页 | 本学科首页   官方微博 | 高级检索  
     


Polydicyclopentadiene based aerogel: a new insulation material
Authors:Je Kyun Lee  George L. Gould
Affiliation:(1) Research and Development Division, Aspen Aerogels, Inc., 30 Forbes Road, Building B, Northborough, MA 01532, USA
Abstract:Lightweight polydicyclopentadiene (pDCPD) based aerogels were developed via a simple sol-gel processing and supercritical drying method. The uniform pDCPD wet gels were first prepared at room temperature and atmospheric pressure through ring opening metathesis polymerization (ROMP) incorporating homogeneous ruthenium catalyst complexes (Grubbs catalyst). Gelation kinetics were significantly affected by both catalyst content and target density (i.e., solid content), while gel solvents also played important role in determining the appearance and uniformity of wet gel and aerogel products. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet pDCPD gels to afford nanoporous aerogel solid. A variety of pDCPD based aerogels were synthesized by varying target density, catalyst content, and solvent and were compared with their xerogel analogs (obtained by ambient pressure solvent removal) for linear shrinkage and thermal conductivity value (1 atm air, 38 °C mean temperature). Target density played a key role in determining porosity and thermal conductivity of the resultant pDCPD aerogel. Differential scanning calorimetery (DSC) demonstrated that the materials as produced were not fully-crosslinked. The pDCPD based aerogel monoliths demonstrated high porosities, low thermal conductivity values, and inherent hydrophobicity. These aerogel materials are very promising candidates for many thermal and acoustic insulation applications including cryogenic insulation.
Contact Information George L. GouldEmail:
Keywords:Polydicyclopentadiene (pDCPD)  Aerogels  Ring opening metathesis polymerization (ROMP)  Supercritical drying  Nanoporous  Insulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号