首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of ultrafast intramolecular charge transfer with 4-(dimethylamino)benzonitrile in acetonitrile
Authors:Druzhinin Sergey I  Ernsting Nikolaus P  Kovalenko Sergey A  Lustres Luis Pérez  Senyushkina Tamara A  Zachariasse Klaas A
Institution:Max-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 G?ttingen, Germany. sdruzhi@gwdg.de
Abstract:The kinetics of the intramolecular charge-transfer (ICT) reaction of 4-(dimethylamino)benzonitrile (DMABN) in the polar solvent acetonitrile (MeCN) is investigated by fluorescence quantum yield and picosecond time-correlated single photon counting (SPC) experiments over the temperature range from -45 to +75 degrees C, together with femtosecond Sn <-- S1 transient absorption measurements at room temperature. For DMABN in MeCN, the fluorescence from the locally excited (LE) state is strongly quenched, with an unquenched to quenched fluorescence quantum yield ratio of 290 at 25 degrees C. Under these conditions, even very small amounts of the photoproduct 4-(methylamino)benzonitrile (MABN) severely interfere, as the LE fluorescence of MABN is in the same spectral range as that of DMABN. The influence of photoproduct formation could be overcome by a simultaneous analysis of the picosecond and photostationary measurements, resulting in data for the activation barriers Ea (5 kJ/mol) and Ed (32 kJ/mol) of the forward and backward ICT reaction as well as the ICT reaction enthalpy and entropy: DeltaH (-27 kJ/mol) and DeltaS -38 J/(mol K)]. The reaction hence takes place over a barrier, with double-exponential fluorescence decays, as to be expected in a two-state reaction. From femtosecond transient absorption down to 200 fs, the LE and ICT excited state absorption (ESA) spectra of DMABN in n-hexane (LE) and in MeCN (LE and ICT) and also of 4-aminobenzonitrile in MeCN (LE) are obtained. For DMABN in MeCN, the quenching of the LE and the rise of the ICT ESA bands occurs with a single characteristic time of 4.1 ps, the same as the ICT reaction time found from the picosecond SPC experiments at 25 degrees C. The sharp ICT peak at 320 nm does not change its spectral position after a pump-probe delay time of 200 fs, which suggests that large amplitude motions do not take place after this time. The increase with time in signal intensity observed for the LE spectrum of DMABN in n-hexane between 730 and 770 nm, is attributed to solvent cooling of the excess excitation energy and not to an inverse ICT --> LE reaction, as reported in the literature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号