首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron-transfer reactions through the associated interaction between cytochrome c and self-assembled monolayers of optically active cobalt(III) complexes: molecular recognition ability induced by the chirality of the cobalt(III) units
Authors:Takahashi Isao  Inomata Tomohiko  Funahashi Yasuhiro  Ozawa Tomohiro  Masuda Hideki
Institution:Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Abstract:Self-assembled monolayers (SAMs) of optically active Co(III) complexes ((S)-2/(R)-2) that contain (S)- or (R)-phenylalanine derivatives as a molecular recognition site were constructed on Au electrodes ((S)-2-Au/(R)-2-Au). Molecular recognition characteristics induced by the S and R configurations were investigated by measurements of electron-transfer reactions with horse heart cytochrome c (cyt c). The electrochemical studies indicate that the maximum current of cyt c reduction is obtained when the Au electrode is modified by 2 with a moderate coverage of approximately 4.0 x 10(-11) mol cm(-2). Since the Au electrode is not densely packed with the Co(III) units at this concentration, we conclude that the penetrative association process between cyt c and the Co(III) unit plays an important role in this electron-transfer system. The differences in the electron-transfer rates of (S)-2-Au and (R)-2-Au increase with increasing scan rates, a result indicating that the chiral ligand has an influence on the rate of association of the complexes with cyt c. 3-Au has a mixed monolayer composed of 2 and hexanethiol and exhibits electron-transfer behavior comparable to 2-Au. The difference in the association rates of (S)-3-Au and (R)-3-Au is larger than that between (S)-2-Au and (R)-2-Au, which indicates that the molecular recognition ability of 3-Au has been enhanced by filling the gap between molecules of 2 with hexanethiols. The differences in the oxidation rates of cyt c(II) between (S)-2-Au and (R)-2-Au and between (S)-3-Au and (R)-3-Au were larger than the differences in the rates of the reduction of cyt c(III); this suggests that the size of the heme crevice varies according to the oxidation state of cyt c.
Keywords:chirality  cobalt  cytochrome c  electron transfer  molecular recognition
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号