首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic and hydromagnetic stability of black holes with radiative transfer
Authors:ROGER BLANDFORD  JONATHAN C McKINNEY  NADIA ZAKAMSKA
Affiliation:1.Kavli Institute of Particle Astrophysics & Cosmology,Stanford,USA;2.The Johns Hopkins University,Baltimore,USA
Abstract:Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the first astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, γ-ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outflows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as ‘exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new γ-ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号