首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elimination of matrix effects for headspace solid-phase microextraction of important volatile compounds in red wine using a novel coating
Authors:Mingming Liu  Zhaorui Zeng  Yun Tian
Institution:

Department of Chemistry, Wuhan University, Wuhan 430072, PR China

Abstract:In this paper, hydroxy-terminated silicone oil-butyl methacrylate-divinylbenzene (OH-TSO-BMA-DVB) copolymer was first synthesized and used as stationary phase with the aid of γ-methacryloxypropyltrimethoxylsilane (KH-570) as bridge in solid-phase microextraction (SPME) using sol–gel method and cross-linking technique. It has high extraction efficiency for both polar alcohols and fatty acids and nonpolar esters in comparison with commercial PDMS, PDMS-DVB and PA fibers. A simple and sensitive headspace SPME-gas chromatography (HS-SPME-GC) method using the novel fiber was presented for the simultaneous analysis of both polar alcohols and fatty acids and nonpolar esters in wine. To check the matrix effects, various model wine matrices, including distilled water; 11.5% ethanol/water (v/v) solution; a concentrated synthetic wine; a ‘volatile-free’ wine and a real wine were investigated in detail. Matrix effects were compensated for by using internal standard method and selecting the ‘volatile-free’ wine as working standard. The method presented in this study showed satisfactory linearity, precision, detection limits and accuracy. The recoveries obtained ranged from 85.87 to 104.2%, and the relative standard deviation values were below 9%. The results obtained indicated that the present method is a validated and accurate procedure for the simultaneous determination of both polar and nonpolar aroma compounds in wine.
Keywords:Sol–gel  Butyl methacrylate  Divinylbenzene  Solid-phase microextraction  Wine  Volatile organic compounds  Matrix effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号