首页 | 本学科首页   官方微博 | 高级检索  
     


Extending nanoscale spectroscopy with titanium nitride probes
Authors:Jacob D. Scherger  Edward A. Evans  Joseph A. Dura  Mark D. Foster
Abstract:
We present a means of controlling the stoichiometry of titanium nitride (TiN) coatings on probes for tip‐enhanced Raman spectroscopy measurements made using sputtering so that outstanding enhancements can be obtained. This provides a more robust alternative to gold‐coated tips that also has potential for tuning the plasmon resonance and working in new environments. Proof of concept measurements on poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) thin films demonstrate increases in the observed intensity with contrast values up to 3.1. TiN is mechanically, chemically, and thermally robust. When deposited under appropriate conditions it has optical properties, including a plasmon resonance, very similar to those of gold. However, the spontaneous formation of a surface TiNxOy layer with relatively high values of y has prevented attaining enhancements in tip‐enhanced Raman spectroscopy beyond that provided by the lightning rod effect. Depositing a thin layer of aluminum to form a passivating Al2O3 layer over the TiN plasmonic structure allows the stoichiometry achieved in the vacuum deposition to be maintained. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:tip‐enhanced Raman spectroscopy  titanium nitride  robust plasmonics  alternative plasmonic materials  chemical sensing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号