首页 | 本学科首页   官方微博 | 高级检索  
     检索      


C-Br Bond Dissociation Mechanisms of 2-Bromothiophene and 3-Bromothiophene at 267 nm
Authors:Feng Zhang  Zhenzhou Cao  Xiao Qin  Yuzhu Liu  Yanmei Wang  Bing Zhang
Institution:aState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract:C-Br bond dissociation mechanisms of 2-bromothiophene and 3-bromothiophene at 267 nm were investigated using ion velocity imaging technique. Translational energy distributions and angular distributions of the photoproducts, Br(2P3/2) and Br*(2P½), were obtained and the possible dissociation channels were analyzed. For these two bromothiophenes, the Br fragments were produced via three channels: (i) the fast predissociation following the intersystem crossing from the excited singlet state to repulsive triplet state; (ii) the hot dissociation on highly vibrational ground state following the internal conversion of the excited singlet state; and (iii) the dissociation following the multiphoton ionization of the parent molecules. Similar channels are involved for photoproduct Br* of the 2-bromothiophene dissociation at 267 nm; whereas for the photoproduct Br* of 3-bromothiophene, the dissociation channel via internal conversion from the excited singlet state to highly vibrational ground state became dominating and the fast predissociation channel via the excited triplet state almost disappeared. Informations about the relative contribution, energy disposal, and the anisotropy of each channel were quantitatively given. It was found that with the position of Br atom in thienyl being far from S atom, the relative ratios of products from channels (i) and (ii) decreased obviously and the anisotropies corresponding to each channel became weaker.
Keywords:Bromothiophene  Photodissociation  Ion velocity imaging
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号