首页 | 本学科首页   官方微博 | 高级检索  
     


Water in nanopores. I. Coexistence curves from Gibbs ensemble Monte Carlo simulations
Authors:Brovchenko I  Geiger A  Oleinikova A
Affiliation:Physikalische Chemie, Universitat Dortmund, D-44221 Dortmund, Germany.
Abstract:Coexistence curves of water in cylindrical and slitlike nanopores of different size and water-substrate interaction strength were simulated in the Gibbs ensemble. The two-phase coexistence regions cover a wide range of pore filling level and temperature, including ambient temperature. Five different kinds of two-phase coexistence are observed. A single liquid-vapor coexistence is observed in hydrophobic and moderately hydrophilic pores. Surface transitions split from the main liquid-vapor coexistence region, when the water-substrate interaction becomes comparable or stronger than the water-water pair interaction. In this case prewetting, one and two layering transitions were observed. The critical temperature of the first layering transition decreases with strengthening water-substrate interaction towards the critical temperature expected for two-dimensional systems and is not sensitive to the variation of pore size and shape. Liquid-vapor phase transition in a pore with a wall which is already covered with two water layers is most typical for hydrophilic pores. The critical temperature of this transition is very sensitive to the pore size, in contrast to the liquid-vapor critical temperature in hydrophobic pores. The observed rich phase behavior of water in pores evidences that the knowledge of coexistence curves is of crucial importance for the analysis of experimental results and a prerequiste of meaningful simulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号