Modeling and simulation of magnetic-shape-memory polymer composites |
| |
Authors: | S. Conti M. Lenz |
| |
Affiliation: | a Fachbereich Mathematik, Universität Duisburg-Essen, Lotharstr. 65, 47057 Duisburg, Germany b Institut für Numerische Simulation, Universität Bonn, Nussallee 15, 53115 Bonn, Germany |
| |
Abstract: | Composites of small magnetic-shape-memory (MSM) particles embedded in a polymer matrix have been proposed as an energy damping mechanism and as actuators. Compared to a single crystal bulk material, the production is simpler and more flexible, as both type of the polymer and geometry of the microstructure can be tuned. Compared to polycrystals, in composites the soft polymer matrix permits the active grains to deform to some extent independently; in particular the rigidity of grain boundaries arising from incompatible orientations is reduced. We study the magnetic-field-induced deformation of composites, on the basis of a continuous model incorporating elasticity and micromagnetism, in a reduced two-dimensional, plane-strain setting. The aim is to give conceptual guidance for the design of composite materials independent of the concrete macroscopic device. Thus, on the background of homogenization theory, we determine the macroscopic behavior by studying an affine-periodic cell problem. An energy descent algorithm is developed, whose main ingredients are a boundary element method for the computation of the elastic and magnetic field energies; and a combinatorial component reflecting the phase transition in the individual particles, which are assumed to be of single-domain type. Our numerical results demonstrate the behavior of the macroscopic material properties for different possible microstructures, and give suggestions for the optimization of the composite. |
| |
Keywords: | Magnetic shape memory Homogenization Boundary elements |
本文献已被 ScienceDirect 等数据库收录! |
|