首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FR900482 class of anti-tumor drugs cross-links oncoprotein HMG I/Y to DNA in vivo
Authors:Beckerbauer L  Tepe J J  Cullison J  Reeves R  Williams R M
Institution:School of Molecular Biosciences, Biochemistry/Biophysics, Washington State University, Pullman, WA 99164-4660, USA.
Abstract:BACKGROUND: Overexpression of the high-mobility group, HMG I/Y, family of chromatin oncoproteins has been implicated as a clinical diagnostic marker for both neoplastic cellular transformation and increased metastatic potential of several human cancers. These minor groove DNA-binding oncoproteins are thus an attractive target for anti-tumor chemotherapy. FR900482 represents a new class of anti-tumor agents that bind to the minor groove of DNA and exhibit greatly reduced host toxicity compared to the structurally related mitomycin C class of anti-tumor drugs. We report covalent cross-linking of DNA to HMG I/Y by FR900482 in vivo which represents the first example of a covalent DNA-drug-protein cross-link with a minor groove-binding oncoprotein and a potential novel mechanism through which these compounds exert their anti-tumor activity. RESULTS: Using a modified chromatin immunoprecipitation procedure, fragments of DNA that have been covalently cross-linked by FR900482 to HMG I/Y proteins in vivo were polymerase chain reaction-amplified, isolated and characterized. The nuclear samples from control cells were devoid of DNA fragments whereas the nuclear samples from cells treated with FR900482 contained DNA fragments which were cross-linked by the drug to the minor groove-binding HMG I/Y proteins in vivo. Additional control experiments established that the drug also cross-linked other non-oncogenic minor groove-binding proteins (HMG-1 and HMG-2) but did not cross-link major groove-binding proteins (Elf-1 and NFkappaB) in vivo. Our results are the first demonstration that FR900482 cross-links a number of minor groove-binding proteins in vivo and suggests that the cross-linking of the HMG I/Y oncoproteins may participate in the mode of efficacy as a chemotherapeutic agent. CONCLUSIONS: We have illustrated that the FR class of anti-tumor antibiotics, represented in this study by FR900482, is able to produce covalent cross-links between the HMG I/Y oncoproteins and DNA in vivo. The ability of this class of compounds to cross-link the HMG I/Y proteins in the minor groove of DNA represents the first demonstration of drug-induced cross-linking of a specific cancer-related protein to DNA in living cells. We have also demonstrated that FR900482 cross-links other minor groove-binding proteins (HMG-1 and HMG-2 in the present study) in vivo; however, since HMG I/Y is the only minor groove-binding oncoprotein presently known, it is possible that these non-histone chromatin proteins are among the important in vivo targets of this family of drugs. These compounds have already been assessed as representing a compelling clinical replacement for mitomycin C due to their greatly reduced host toxicity and superior DNA interstrand cross-linking efficacy. The capacity of FR900482 to cross-link the HMG I/Y oncoprotein with nuclear DNA in vivo potentially represents a significant elucidation of the anti-tumor efficacy of this family of anticancer agents.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号