Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases |
| |
Authors: | Díaz Natalia Suarez Dimas Sordo Tomás L |
| |
Affiliation: | Departamento de Química Física y Analítica, Universidad de Oviedo C/Julián Clavería 8, 33006 Oviedo (Asturias), Spain. diazfnatalia@uniovi.es |
| |
Abstract: | X-ray analyses of matrix metalloproteinases (MMPs) have shown that the catalytic zinc ion (Zn1) can bind to one to three water molecules in addition to three conserved histidine residues. To estimate the relative stability of the possible Zn1 coordination structures in the active site of the MMPs, we carry out computational analyses on the coordination environment of the Zn1 ion in the gelatinase A enzyme (or matrix metalloproteinase 2; MMP-2). Four-, five-, and six-coordinated complexes representative of the Zn1 site are fully characterized by means of quantum mechanical (QM) methodologies. On one hand, B3LYP/LACVP* minimizations of various cluster models of the MMP-2 active site show that the trigonal bipyramidal geometry is energetically favored in the gas phase and that continuum solvent effects stabilize preferentially the tetrahedral complexes. On the other hand, B3LYP/OPLS-AA hybrid QM/molecular mechanical calculations in the solvated catalytic domain of the MMP-2 enzyme complemented with electrostatic Poisson-Boltzmann calculations show that the mature enzyme presents most likely a Zn1 ion coordinated by three histidine residues and two water molecules, while the active site glutamic acid is negatively charged. In consonance with X-ray diffraction data, other possible Zn1 configurations, a six-coordinated structure with Zn1-water as well as four- and five-coordinated complexes with a Zn1-bound hydroxide, are predicted to be very close in energy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|