首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the structure of nonequilibrium three-dimensional hypersonic flow past blunt bodies
Authors:V. G. Shcherbak
Abstract:Three-dimensional dissociating air flow past blunt bodies is investigated within the framework of the parabolized Navier-Stokes equations in the thin layer approximation. Multicomponent diffusion, barodiffusion and homogeneous chemical reactions, including dissociation-recombination and exchange reactions, are taken into account. The boundary conditions are assigned in the free stream and at the surface of the body with allowance for heterogeneous catalytic reactions and slip effects. The problem of flow at zero angle of attack past blunt bodies possessing two planes of symmetry is investigated numerically for flow patterns varying from smeared layer structure to almost ideal flow (Reinfin=50-105). The flow conditions corresponded to the motion of a body with lift along a re-entry trajectory [1]. The contribution of the chemical reactions in the shock wave as compared to the diffusion flux at the edge of the shock wave was estimated. The edge of the shock wave is assumed to correspond to the point at which the density profile has the greatest slope. The influence of slip effects and barodiffusion on the flow characteristics is demonstrated. The results of the calculations are compared with calculations based on the thin viscous shock layer model [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 143–150, September–October, 1987.The author wishes to express his thanks to G. A. Tirskii and V. V. Lunev for useful discussions and valuable advice.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号