首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Topography of dipalmitoyl-phosphatidyl-choline monolayers penetrated by β-casein
Authors:Ana Lucero Caro  M Rosario Rodríguez Nio  Juan M Rodríguez Patino
Institution:aDepartamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/. Prof. García González, 1, 41012 Seville, Spain
Abstract:In this work we have analyzed the topography by atomic force microscopy (AFM) of dipalmitoyl-phosphatidyl-choline (DPPC) monolayers previously spread at the air–water interface and penetrated by β-casein. AFM images of β-casein–DPPC monolayers were taken from Langmuir–Blodgett films deposited onto hydrophilic mica substrates at different initial surface pressures (πi) and after the compression of the mixed films. The monolayer topography depends on the initial structure of the phospholipid:liquid expanded (LE) at 3 mN/m, coexistence between LE and liquid condensed (LC) structures at 7 mN/m, at the end of the LE–LC transition at 10 mN/m, and with a LC structure at 15 mN/m. The area occupied by DPPC domains in the mixed film increases with the πi value, especially for DPPC with a LC structure at 15 mN/m. At this surface pressure the thickness of the film is at a maximum. After the film compression at 25 mN/m, which is above the equilibrium spreading pressure of β-casein (View the MathML source), this protein is displaced from the interface by DPPC and the topography of the mixed monolayer depends on the initial structure of the DPPC monolayer. A notable feature of the topography of these mixed monolayers is the presence of multilayers of β-casein and DPPC of high thickness (50–70 nm) at the lower πi values. Although the film is dominated by DPPC at the highest surface pressures (at 25 mN/m), β-casein is not displaced totally from the interface and coexists as β-casein collapsed domains within the network of the DPPC structure.
Keywords:Protein  Phospholipid  Air–  water interface  Adsorption  Penetration  Monolayer structure  Monolayer topography  Atomic force microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号