Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate |
| |
Authors: | Agata Roguska Andrzej KudelskiMarcin Pisarek Magdalena OparaMaria Janik-Czachor |
| |
Affiliation: | a Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland b Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland c Department of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland |
| |
Abstract: | Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed. |
| |
Keywords: | Ag, Au or Cu clusters TiO2 nanotubes Surface-enhanced Raman scattering (SERS) SEM morphological examinations AES surface analysis |
本文献已被 ScienceDirect 等数据库收录! |
|