首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions
Authors:Yong Chen  Qiuxia Han
Institution:a Department of Applied Chemistry, College of Chemical & Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd., Huangdao Zone, Qingdao 266510, PR China
b Department of Biological Engineering, College of Chemical & Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
Abstract:We demonstrate a valuable method to generate reactive groups on inert polymer surfaces and bond antibacterial agents for biocidal ability. Polystyrene (PS) surfaces were functionalized by spin coating of sub-monolayer and monolayer films of poly(styrene-b-tert-butyl acrylate) (PS-PtBA) block copolymer from solutions in toluene. PS-PtBA self-assembled to a bilayer structure on PS that contains a surface layer of the PtBA blocks ordering at the air-polymer interface and a bottom layer of the PS blocks entangling with the PS substrate. The thickness of PtBA layer could be linearly controlled by the concentration of the spin coating solution and a 2.5 nm saturated monolayer coverage of PtBA was achieved at 0.35% (w/w). Carboxyl groups were generated by exposing the tert-butyl ester groups of PtBA on saturated surface to trifluoroacetic acid (TFA) to bond tert-butylamine via amide bonds that were further chlorinated to N-halamine with NaOCl solution. The density of N-halamine on the chlorinated surface was calculated to be 1.05 × 10−5 mol/m2 by iodimetric/thiosulfate titration. Presented data showed the N-halamine surface provided powerful antibacterial activities against Staphylococcus aureus and Escherichia coli. Over 50% of the chlorine lost after UVA irradiation could be regained upon rechlorination. This design concept can be virtually applied to any inert polymer by choosing appropriate block copolymers and antibacterial agents to attain desirable biocidal activity.
Keywords:Surface functionalization  Antibacterial polymer surfaces  N-halamine  Spin coating
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号