Thermochemistry of the higher chlorine oxides ClOx (x=3, 4) and Cl2Ox (x=3–7)† |
| |
Authors: | J. E. Sicre C. J. Cobos |
| |
Affiliation: | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CICPBA, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina |
| |
Abstract: | ![]() Heats of formation for ClO3, ClO4, Cl2O3, Cl2O4, Cl2O5, Cl2O6 and Cl2O7 molecules are determined at the B3LYP, B3PW91, mPW1PW91 and B1LYP levels of the density functional theory employing a series of extended basis sets, and using Gaussian-3 model chemistries. Modified Gaussian-3 calculations, which employ accurate B3LYP/6-311+G(3d2f) molecular geometries and vibrational frequencies, were also performed. Heats of formation were calculated from both total atomization energies and isodesmic reaction schemes. The latter method in conjunction with Gaussian-3 models leads to the most reliable results. The best values at 298 K for ClO3, ClO4, Cl2O3 and Cl2O4 as derived from an average of G3//B3LYP and G3//B3LYP/6-311+G(3d2f) calculations are 43.1, 54.8, 31.7 and 37.4 kcal mol−1. From calculations carried out at the G3(MP2)//B3LYP and G3(MP2)//B3LYP/6-311+G(3d2f) levels, heats of formation for Cl2O5, Cl2O6 and Cl2O7 are predicted to be 53.2, 52.2 and 61.5 kcal mol−1. All best values are reproduced within 1 kcal mol−1 by using mPW1PW91/6-311+G(3d2f) isodesmic energies. Enthalpy changes for relevant Cl–O bond fission reactions are reported. Comparisons with previous thermodynamics data are made. |
| |
Keywords: | Chlorine oxides Heats of formation Ab initio Density functional theory |
本文献已被 ScienceDirect 等数据库收录! |
|