首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Logic Gates Based on Magnetic Nanoparticles Functionalized with a Bioelectrocatalytic System
Authors:Sergey Vasilyev  Marcos Pita  Evgeny Katz
Institution:Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699‐5810, USA
Abstract:Magneto‐controlled OR, AND and INHIB logic gates were designed using cobalt ferrite magnetic nanoparticles (CoFe2O4, saturated magnetization ca. 70 emu g?1, 17±2 nm diameter) functionalized with microperoxidase‐11. Tunable magnetic field generated by three external permanent magnets (NdFeB) upon moving them below the electrochemical cell resulted in translocation of the biofunctionalized magnetic nanoparticles between conductive and nonconductive domains of a solid plate. This resulted in electrochemically readable output signals with the Boolean logic controlled by the magnetic input signals. The current corresponding to the reversible redox process of the heme measured at ?0.4 V (vs. SCE) was considered as “1” output signal, while a small background current obtained from the conducting interface in the absence of the magnetic nanoparticles was considered as “0” output signal. Addition of H2O2 to the solution resulted in the generation of a cathodic catalytic current when the microperoxidase‐11‐functionalized magnetic nanoparticles are associated with the conductive domain of the support. This resulted in the amplification of “1” output signal and the increased difference between “1” and “0” signals generated by the cell, thus reducing the possibility of errors in the Boolean logic operations.
Keywords:Logic gates  Biocomputing  Bioelectrocatalysis  Magnetic nanoparticles  Microperoxidase  Boolean logic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号