首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydration Dynamics of Water near an Amphiphilic Model Peptide at Low Hydration Levels: A Dielectric Relaxation Study
Authors:Padmanabhan Sasisanker Dr  Hermann Weingärtner Prof Dr
Institution:Physical Chemistry II, Ruhr‐University Bochum, 44780 Bochum (Germany), Fax: (+49)?234‐32‐14293
Abstract:A dielectric relaxation study of aqueous solutions of the amphiphilic model peptide N‐acetyl‐leucine amide (NALA) at 298 K over a wide range of hydration levels is presented. The experiments range from states where water builds up several hydration layers to states where single water molecules or small water clusters are shared by several NALA molecules. The dielectric spectra reveal two modes on the 10 and 100 ps timescales. These are largely broadened with regard to the Lorentzian shape caused by simple Debye‐type relaxation, and are well described by the Kohlrausch–Williams–Watts stretched exponential function. The fast mode is assigned to water reorientation comprising bulk water as well as hydration water. Even when all water molecules are in contact with the solute, this fast component is dominant, and its mean relaxation time is retarded by less than a factor of two relative to neat water. The amplitude of the slow process is far higher than expected for the dipolar reorientation of the solute. The observations are consistent with results from molecular dynamics simulations for a similar model peptide reported in the literature. They suggest that the slow relaxation mode is mainly founded in peptide–water dipolar couplings, with some additional contribution from slowly reorienting hydration water molecules. The results are discussed with regard to the hydration dynamics of proteins and the interpretation of dielectric spectra of protein solutions.
Keywords:amphiphiles  dielectric spectroscopy  hydration dynamics  peptides  water chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号