The geometry of small rings—IV: Molecular geometry of cyclopropene and its derivatives |
| |
Authors: | Frank H. Allen |
| |
Affiliation: | Crystallographic Data Centre University Chemical Laboratory, Lesnfield Road, Cambridge CB2 1EW, England |
| |
Abstract: | ![]() Numeric structural data for 34 derivatives of cyclopropene and cyclopropenium ion have been retrieved from the Cambridge Crystallographic Database and analysed in conjunction with available gas-phase results. Geometric data indicate that the vinylic C atoms in cyclopropene use sp1.19 hybrids in bond formation to substituents and contribute sp2.68 hybridges to the ring σ-framework. The D3h-symmetric cyclopropenium ion has a bond length of 1.373(3)Å, which can be related to distances in unstrained systems. Comparison of data for cyclopropenylidenes and 3,3-difluorocyclopropene with analogous cyclopropanes shows that π-donor effects (distal bond lengthening, vicinal bond shortening) are apparent in cyclopropene. Rehybridization and π-donation are largely responsible for cyclopropenylidene geometry, rather than significant contributions from dipolar and pseudo-aromatic resonance forms. Insufficient data exist to quantify the effect of π-acceptor substituents on cyclopropene, but some lengthening of vicinal bonds is apparent. Three major bonding patterns are exhibited by organomental derivatives of cyclopropenium and cyclopropene. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|