首页 | 本学科首页   官方微博 | 高级检索  
     

CNN在煤矿突水水源LIF光谱图像识别的应用
引用本文:周孟然,来文豪,王亚,胡锋,李大同,王锐. CNN在煤矿突水水源LIF光谱图像识别的应用[J]. 光谱学与光谱分析, 2018, 38(7): 2262-2266. DOI: 10.3964/j.issn.1000-0593(2018)07-2262-05
作者姓名:周孟然  来文豪  王亚  胡锋  李大同  王锐
作者单位:1. 安徽理工大学电气与信息工程学院,安徽 淮南 232000
2. 阜阳师范学院计算机与信息工程学院,安徽 阜阳 236000
基金项目:国家“十二五”科技支撑计划重点项目(2013BAK06B01),国家安全生产重大事故防治关键技术科技项目(anhui-0001-2016AQ),国家自然科学基金项目(51174258)资助
摘    要:煤矿突水类型的快速识别在矿井安全生产中意义重大,煤矿突水激光诱导荧光(LIF)光谱的识别方法,需要对光谱曲线进行预处理和特征提取,其过程较复杂,对此,提出了一种卷积神经网络(CNN)快速识别矿井突水类别的方法。根据煤矿矿井水层的分布特点和最常见煤矿突水类型,选取三种原始水样以及由原始水样混合的两种混合水为实验材料,利用LIF技术快速获取五种水样的200组荧光光谱曲线图,灰度化后输入CNN算法,其中150组光谱曲线图用于CNN的训练,剩余50组用于训练好的模型测试。模型测试中,CNN算法对实验水样光谱曲线图的识别率为100%,实验结果表明,CNN算法不仅能省去煤矿突水光谱图像识别中的数据处理和特征提取工作,而且还能快速有效的识别矿井突水类型。

关 键 词:煤矿突水  激光诱导荧光  卷积神经网络  荧光光谱  图像识别  
收稿时间:2017-09-09

Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush
ZHOU Meng-ran,LAI Wen-hao,WANG Ya,HU Feng,LI Da-tong,WANG Rui. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2262-2266. DOI: 10.3964/j.issn.1000-0593(2018)07-2262-05
Authors:ZHOU Meng-ran  LAI Wen-hao  WANG Ya  HU Feng  LI Da-tong  WANG Rui
Affiliation:1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232000, China2. School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236000, China
Abstract:Rapid identification of mine water inrush has great significance for mine safety production. The identification method of laser induced fluorescence(LIF) in mine water inrush requires to pretreat and characterizing the spectral curve is complicated. Therefore, a method to quickly identify the type of mine water inrush by using the convolutional neural network(CNN) was proposed. According to the coal mine water distribution characteristics and the most common type of water inrush, we selected three kinds of raw water samples and two kinds of mixed water mixed by the original water as experimental material, in the experiment, we used LIF technology to quickly obtain 200 sets of fluorescence spectrum curves of 5 kinds of water samples. After gray degree transformation, the fluorescence spectrum curves inputed into CNN algorithm,150 groups of spectrum as the training set while the rest 50 groups of spectrum as the test set. In the model test, CNN’s recognition rate was 100%. The experimental results showed that the CNN algorithm can not only save the data processing and feature extraction in the image of recognition of mine water inrush, but also quickly and effectively identify the type of mine water inrush.
Keywords:Mine water inrush  Laser induced fluorescence  Convolutional neural network  Fluorescence spectrum  Image recognition  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号