首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solving the knapsack problem with imprecise weight coefficients using genetic algorithms
Authors:Feng-Tse Lin
Institution:Department of Applied Mathematics, Chinese Culture University, Yangminshan, Taipei 111, Taiwan
Abstract:This paper investigates solving the knapsack problem with imprecise weight coefficients using genetic algorithms. This work is based on the assumption that each weight coefficient is imprecise due to decimal truncation or coefficient rough estimation by the decision-maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to model and solve this problem. We investigate the possibility of using genetic algorithms in solving the fuzzy knapsack problem without defining membership functions for each imprecise weight coefficient. The proposed approach simulates a fuzzy number by distributing it into some partition points. We use genetic algorithms to evolve the values in each partition point so that the final values represent the membership grade of a fuzzy number. The empirical results show that the proposed approach can obtain very good solutions within the given bound of each imprecise weight coefficient than the fuzzy knapsack approach. The fuzzy genetic algorithm concept approach is different, but gives better results than the traditional fuzzy approach.
Keywords:Genetic algorithms  Fuzzy sets  Knapsack problem  Fuzzy knapsack problem
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号