1.Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China ;2.State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China ;3.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China ;
Abstract:
Photoresists are essential for the fabrication of flexible electronics through all-photolithographic processes. Single component semiconducting photoresist exhibits both semiconducting and photo-patterning properties, and as a result, the device fabrication process can be simplified. However, the design of semiconducting polymeric photoresist with ambipolar semiconducting property remains challenging. In this paper, we report a single component semiconducting photoresist (PFDPPF4T-N3) by incorporating azide groups and noncovalent conformation locks into the side alkyl chains and conjugated backbones of a diketopyrrolopyrrole-based conjugated polymer, respectively. The results reveal that PFDPP4FT-N3 exhibits ambipolar semiconducting property with hole and electron mobilities up to 1.12 and 1.17 cm2 V?1 s?1, respectively. Moreover, field effect transistors with the individual photo-patterned thin films of PFDPPF4T-N3 also show ambipolar semiconducting behavior with hole and electron mobilities up to 0.66 and 0.80 cm2 V?1 s?1, respectively. These results offer a simple yet effective design strategy for high-performance single component semiconducting photoresists, which hold great potential for flexible electronics processed by all photolithography.