首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems
Authors:P J van der Houwen  B P Sommeijer  W A van der Veen
Institution:(1) CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Abstract:For the parallel integration of stiff initial value problems (IVPs) three main approaches can be distinguished: approaches based on ldquoparallelism across the problemrdquo, on ldquoparallelism across the methodrdquo and on ldquoparallelism across the stepsrdquo. The first type of parallelism does not require special integration methods can be exploited within any available IVP solver. The methodparallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteraction process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to solve the four-stage Radau IIA corrector used in our experiments within a few effective iterations per step and to achieve speed-up factors up to 10 with respect to the best sequential codes.The research reported in this paper was partly supported by the Technology Foundation (STW) in the Netherlands.
Keywords:Numerical analysis  Runge-Kutta methods  parallelism
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号