首页 | 本学科首页   官方微博 | 高级检索  
     


Formation and characterization of long-chained alkylsiloxane self-assembled monolayers on atomic-layer-deposited aluminum oxide surfaces
Authors:A.A. Yasseri  N.P. Kobayashi  T.I. Kamins
Affiliation:(1) Quantum Science Research, Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
Abstract:We report the formation of highly robust long-chained alkylsiloxane self-assembled monolayers (SAMs) on aluminum oxide films prepared by atomic-layer deposition (ALD). The surface chemistry and the morphological characteristics of the SAMs were examined by X-ray photoelectron spectroscopy, infrared spectroscopy, atomic-force microscopy, and contact-angle goniometry. The octadecylsiloxane-derived SAMs initially hydrolyze and deposit on the alumina surface as ∼1.8 nm thick, monolayer-high islands ≤50 nm in diameter. The size of these islands increases with time, likely through a surface-diffusion aggregation process. Coalescence of neighboring islands leads to a densely packed and robust monolayer on the alumina surface. The SAMs on ALD alumina are expected to be useful in a number of nanostructure applications where the combination of conformal alumina deposition and conformal coverage of the alumina by an organic layer is critical. PACS 81.16.Dn; 81.65.Kn; 82.45.Mp; 81.65.-b
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号