首页 | 本学科首页   官方微博 | 高级检索  
     


Periodical streaming potential and electro-viscous effects in microchannel flow
Authors:Lei Gong  Jian-kang Wu  Lei Wang  Kan Chao
Affiliation:Wuhan National Laboratory for Optoelectronics, Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Abstract:
This paper presents an analytical solution to periodical streaming potential,flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson.Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow.Dimensional analysis indicates that electric-Viscous force depends on three factors:(1)Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state,(2)profile function describing the distribution profile of electro-viscous forcein channel section,and(3)coupling coefficient reflecting behavior of amplitude damping and phase Offset of electro-viscous force.Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number(Re=wh2/v).Flow-induced electric field varies very slowly with Re when Re<1.and rapidly decreases when Re>1.Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.
Keywords:steaming potential  flow-induced electric field  frequency Reynolds number  electro-viscous effect
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号