首页 | 本学科首页   官方微博 | 高级检索  
     


Vortex-induced vibrations of two mechanically coupled circular cylinders with asymmetrical stiffness in side-by-side arrangements
Affiliation:1. Department of Civil Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China;2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China;3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, No. 800, Dongchuan Road, Shanghai 200240, China;4. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China;5. Department of Aeronautics, Imperial College London, London SW7 2AZ, UK;6. Cullen College of Engineering, University of Houston, Houston, TX 77204, USA;1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;2. School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom;3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
Abstract:Vortex-induced vibrations of two mechanically coupled circular cylinders with asymmetrical stiffness in side-by-side arrangements are numerically investigated in a uniform flow at a low Reynolds number of 100. The oscillation system is restricted to the cross-flow direction, giving rise to a coupled two-degree-of-freedom response. Attention is placed on the two cylinders with a center-to-center gap ratio of 4 and a mass ratio of 10. The flow dynamics are described by the two-dimensional incompressible Navier–Stokes equations and resolved by the Characteristic-Based-Split finite element method. The stiffness of the first spring that connects the lower cylinder to the wall is chosen such that the vortex-induced vibration of the associated single cylinder with the same stiffness undergoes a pre-synchronization (state A), synchronization (state B) and post-synchronization (state C), respectively. In each state, the stiffness of the second spring connecting the lower and upper cylinders is varied to cover both synchronization and de-synchronization regimes. Numerical results show that the mechanically coupled system locks on the first-mode natural frequency in state A, while on the second-mode natural frequency in states B and C. In such a lock-in regime, the amplitude ratios of the two oscillating and coupled cylinders collapse well onto the corresponding first or second free-vibration mode. The overall coupling mechanism is further explained in terms of the hydrodynamic coefficients, frequency characteristics, wake patterns and effective added mass, quantifying the associated fluid-structure interactions against those governing a single-degree-of-freedom, single-cylinder system.
Keywords:Vortex-induced vibration  Mechanically coupled cylinders  Two-degree-of-freedom system  Side-by-side arrangement  Proximity interference
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号